Efficient Ruthenium-Catalysed Synthesis of 3-Hydroxy-1-propen-1-yl Benzoates: En Route to an Improved Isomerization of 2-Propyn-1-ols into α,β -Unsaturated Aldehydes

Michel Picquet, [a] Aranzazu Fernández, [a] Christian Bruneau, *[a] and Pierre H. Dixneuf [a]

Keywords: Ruthenium / anti-Markovnikov addition / Alkynes / Alcohols / 3-Hydroxy enol esters / Aldehydes

A two-step ruthenium(II) and acid-catalysed one-pot selective transformation of 2-propyn-1-ols into α,β -unsaturated aldehydes has been developed. The complex [(dppe)Ru(η^3 -CH₂C(Me)CH₂)₂] (dppe = Ph₂PCH₂CH₂PPh₂) is an efficient precatalyst for the anti-Markovnikov addition of benzoic acid

to 2-propyn-1-ols with the formation of 3-hydroxy-1-propen-1-yl benzoates in good yields. The latter readily undergo rapid transformation into α,β -unsaturated aldehydes on treatment with a catalytic amount of an acid such as PTSA or HBF₄ at room temperature.

Introduction

In the field of activation of simple or elaborated molecules, ruthenium derivatives have a tremendous potential in organic synthesis to promote catalytic reactions under mild conditions and with high selectivity.[1] The selective formation of C-O bonds via electrophilic activation of alkynes by ruthenium(II) catalysts^[2] has been used as a powerful tool for the preparation of enol esters, [3] furans [4] and saturated aldehydes^[5] from simple alkynes, whereas β-oxopropyl esters can be obtained from 2-propyn-1-ols.^[6] We have recently pointed out that slight modifications of the catalyst precursor allow the control of the regio- and stereoselective anti-Markovnikov addition of carboxylic acids to terminal alkynes with the formation of (Z)-1-alken-1-yl carboxylates.^[7] Advantage of the latter reaction has been taken for the selective isomerization of propargylic alcohols to α,β-unsaturated aldehydes in two steps.^[8]

We now report a new one pot, two step catalytic transformation of propargylic alcohols into α,β -unsaturated aldehydes based on: i) the *anti*-Markovnikov addition of benzoic acid to a variety of 2-propyn-1-ols at low temperature in the presence of (dppe)Ru(η^3 -CH₂C(Me)CH₂)₂ as ruthenium catalyst to afford novel 3-hydroxy-1-propen-1-yl benzoates, and ii) the treatment of these functional esters with a catalytic amount of acid (HBF₄ or *p*-MeC₆H₄SO₃H) which leads to total conversion into α,β -unsaturated aldehydes according to Equation 1.

$$\begin{array}{c|c} R^1 & Ru \ cat. \ / \ 50 \ ^\circ C \\ \hline OH & PhCO_2H & Ph \\ \hline \\ & \\ & \\ PhCO_2H & \\ \hline \end{array}$$

[a] UMR 6509, CNRS – Université de Rennes, Organométalliques et Catalyse, Chimie et Electrochimie Moléculaires, Campus de Beaulieu, F-35042 Rennes, France The present paper brings novelty and improvement with respect to our initial results^[8] in the search for methods for the isomerization of 2-propyn-1-ols into α,β -unsaturated aldehydes, since our current method not only permits the isolation and characterization of the intermediate enol esters but also allows the acid-catalysed transformation to be conducted at room temperature in contrast to the thermal method which requires a reaction temperature of 110 °C.

Results and Discussions

Catalytic Synthesis of 3-Hydroxy-1-propen-1-yl Benzoates

The reaction of 5 mmol of benzoic acid 1 with 5 mmol of 2-methylbut-3-yn-2-ol (2a) ($R^1 = R^2 = Me$) in toluene at 50 °C for 2 h in the presence of 0.05 mmol of [(dppe)Ru(η^3 -CH₂C(Me)CH₂)₂] (I) led to the complete conversion of the starting propynylic alcohol with the selective formation of 3-hydroxy-1-propen-1-yl benzoate 3a which was subsequently isolated in 51% yield with a Z/E ratio of 81:19 (Scheme 1).

Scheme 1. Catalytic addition of benzoic acid to propynols

Similarly, more sterically hindered propargylic alcohols **2b-f** (Table 1) were treated with benzoic acid **1** in the presence of 1 mol-% of **I** at 50 °C to produce the corresponding 3-hydroxy enol esters **3b-f**. Thus, the reaction of 5 mmol of the dialkyl disubstituted 2-propyn-1-ol **2b**, or 5 mmol of the propynylic alcohols **2c** and **2d** containing a carbon-car-

Table 1. Anti-Markovnikov addition of benzoic acid to 2-propyn-1-ols $2\mathbf{a} - \mathbf{f}$ catalysed by complex $\mathbf{I}^{[a]}$

2-propyn-1-ol	3-hydroxy-1-propen-1-yl	isolated yield	isomer ratio
	benzoate	(%)	Z/E
≡-{ OH 2a	Ph O NO 3a	51	81/19 86/14 ^(b)
\equiv OH 2b	Ph HO 3b	82	82/18
≡ OH 2c	Ph O HO	83	87/13 85/15 ^[b]
= ← OH 2d	Ph HO HO 3d	71	100/0
$= \begin{array}{c} Ph \\ OH \end{array}$	Ph O HO Ph 3e	90	67/33 70/30 ^[b]
Ph OH 2f	Ph Ph Ph HO 3f	79	60/40 63/37 ^[b]

[a] General conditions: 2-propyn-1-ol 2 (5 mmol), benzoic acid (5 mmol), (dppe)Ru(η^3 -CH₂C(Me)CH₂)₂ I (1 mol-%, 0.05 mmol), toluene (3 mL), 50 °C, 2 h; Z/E ratio determined by 1 H NMR spectroscopy. – $^{[b]}$ Z/E ratio for experiments carried out at 70 °C.

bon double bond, with 5 mmol of benzoic acid 1 under the same conditions afforded 82, 83 and 71% of **3b**, **3c** and **3d**, respectively. The propynols **2e** and **2f**, with at least one phenyl group at the propargylic position, led to the isolation of 90 and 79% of the corresponding 3-hydroxy-1-propen-1-yl esters **3e** and **3f**. These experiments show that the *anti*-Markovnikov addition of benzoic acid to various 2-propyn-1-ols can be selectively performed and controlled at 50 °C in the presence of [(dppe)Ru(η^3 -CH₂C(Me)CH₂)₂] as catalyst. These results contrast directly with our previous results with [(dppb)Ru(η^3 -CH₂C(Me)CH₂)₂] (dppb = Ph₂P(CH₂)₄PPh₂) as precatalyst, which led to the addition of the carboxylate at C(2) of the triple bond and the formation of β-oxopropyl esters.^[2c,7]

It is noteworthy that the (Z)-stereoisomer was always obtained as the major ester. However, the Z/E ratio was strongly dependent on the nature of the substituents at the propargylic position: substitution by alkyl groups afforded good Z/E ratios of 81:19, 82:18, 87:13, and 100:0 for **3a** ($R^1 = R^2 = Me$), **3b** [$R^1 = Me$, $R^2 = CH_2CH(Me)_2$], **3c** ($R^1 = Me$, $R^2 = CH_2CH_2CH=CMe_2$) and **3d** ($R^1 = Me$, $R^2 = CH_2CH_2CH=CH_2$), respectively, whereas the presence of phenyl groups dramatically decreased the selectivity with Z/E ratios of 67:33 for **3e** ($R^1 = Me$, $R^2 = Ph$) and 60:40 for **3f** ($R^1 = R^2 = Ph$) (Table 1).

It should be noted that in a previous communication we reported the presence of 3-hydroxy-1-propen-1-yl benzoates as intermediates, which were detected during the two-step ruthenium-catalysed isomerization of 2-propyn-1-ols into α , β-unsaturated aldehydes at elevated temperature. [8] These benzoates were not isolated, but ¹H NMR spectroscopic examination of the crude mixture after treatment of various propynylic alcohols **2** with benzoic acid **1** and [(dppe)Ru(η ³-CH₂C(Me)CH₂)₂] (**I**) as catalyst in toluene at 70 °C made possible the determination of the *Z/E* ratios of the 3-hydroxy-1-propen-1-yl benzoates formed as intermediates (Table 1).

An increase of the reaction temperature from 50 °C to 70 °C did not significantly modify the Z/E ratio. In addition, we have also found that the *anti*-Markovnikov addition of benzoic acid to 2-phenyl-3-butyn-2-ol (**2e**) catalysed by 1 mol-% of the ruthenium complex **I** was also efficient at room temperature and led to complete conversion of **2e** to 3-hydroxy-3-phenyl-1-propen-1-yl benzoate (**3e**) after 2 h with a similar stereoselectivity (Z/E = 66:34). These results strongly suggest that the stereoselectivity of the addition of the carboxylic acid to the triple bond of propargylic alcohols is probably not a result of thermodynamic control.

Transformation of 3-Hydroxy-1-propen-1-yl Benzoates into α,β -Unsaturated Aldehydes

The synthesis of simple α,β -unsaturated aldehydes has potential in the preparation of a variety of terpenoids, e.g. vitamin A and derivatives, as well as perfume and cosmetic components,[11,12] or can be used to obtain biologically active derivatives.^[13] We recently reported that such enals could be obtained from 3 by thermal transformation at 100 °C. However, ¹H NMR spectroscopic monitoring revealed that only the (Z)-esters of 3 were converted into α,β -enals 4.[8] For example, treatment of the steroid derivative 2g (levonorgestrel) at 70 °C for 2 h in the presence of 1 equivalent of benzoic acid and I as catalyst afforded the corresponding enol ester 3g with low stereoselectivity. Further heating of the reaction mixture at 100 °C for 15 h led to the total conversion of (Z)-3g into the α,β -unsaturated aldehyde 4g (51% yield), whereas the (E)-isomer remained unchanged and was recovered in 41% yield (Scheme 2).[9]

Scheme 2. Selective transformations of steroid 2g

Interestingly, we found that by treating compounds 3 at room temperature in the same pot without isolation, with a catalytic amount of either *para*-toluenesulfonic acid

Ph
$$R^2$$
 PTSA, r. t. R^2 R

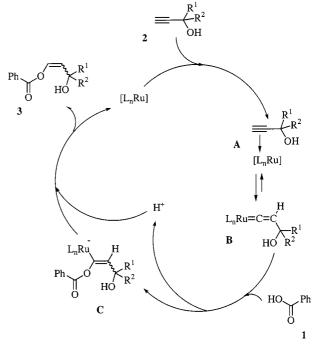
Scheme 3. Acid-catalyzed formation of conjugated enols

(PTSA) or HBF₄, α,β -unsaturated aldehydes were rapidly obtained in good yields according to Scheme 3.^[10] Moreover, this method made possible the transformation of both Z and E isomers of 3-hydroxy-1-propen-1-yl benzoates 3 into the corresponding aldehydes 4.

Thus, treatment of the hydroxy enol ester **3a** with 1 mol-% of PTSA at room temperature and in the absence of solvent led after 2 h to a complete transformation into prenal **4a** in 88% isolated yield (Table 2). By contrast, thermal rearrangement afforded prenal in a lower yield of 68%, [8]

With toluene as solvent, compound **3c** led to the terpenoid citral **4c** in 57% yield after treatment with a catalytic amount of PTSA, whereas compound **3h** afforded 72% of the aldehyde **4h**. Remarkably, no side products which could arise from possible dehydration of the alkyl-substituted hydroxy enol esters **3** were observed. It is noteworthy that compound **4e** was obtained in 91% yield with PTSA as catalyst, whilst the starting product **3e** contained only 67% of the (*Z*)-isomer, thus indicating that both (*Z*)- and (*E*)-3-hydroxy-1-propen-1-yl benzoates were quantitatively trans-

Table 2. Acid-catalysed transformation of in situ generated 3-hydroxy-1-propen-1-yl benzoates 3 into aldehydes 4^[a]


3-hydroxy-1-propen-1-yl benzoate	Acid (mol%)	reaction time	α,β-unsaturated aldehyde	yield ^[b] (%)
Ph O HO 3a, Z/E = 81/19	PTSA (1 mol%)	2 h ^(c)	0=\\ 4a	88
Ph 0 HO $3c$, $Z/E = 87/13$	PTSA (1 mol%)	15 h ^[d]	0=	57
Ph O Ph	PTSA (1 mol%)	1.5 h	\Rightarrow	91 $Z/E = 10/90$
3e, $Z/E = 67/33$	HBF ₄ (10 mol%)	5 min	O≕ ^e `Ph 4e	79 Z/E = 33/67
Ph HO O HO $3h$, $Z/E = 78/22$	PTSA (1 mol%)	15 h ^[d]	0=/=________________\	72

 $^{[a]}$ General conditions: 2-propyn-1-ol 2 (5 mmol), benzoic acid (5 mmol), (dppe)Ru(η^3 -CH $_2$ C(Me)CH $_2$) $_2$ I (1 mol-%, 0.05 mmol), toluene (3 mL), 50 °C, 2 h leading to complete conversion into 3, followed by addition of a catalytic amount of PTSA or HBF $_4$ at room temp. - $^{[b]}$ Isolated yields based on the starting propynylic alcohol 2. - $^{[c]}$ Solvent free reaction. - $^{[d]}$ Reaction performed at 10 °C.

formed into α ,β-unsaturated aldehydes. Moreover, the high selectivity obtained for compound **4e** (Z/E = 10:90) strongly contrasts with that obtained by thermal rearrangement at 100 °C (Z/E = 67:33). The use of 10 mol-% of the stronger acid HBF₄ gave the enal **4e** in 79% isolated yield after only 5 min in exothermic reaction but with a lower stereoselectivity.

Mechanistic Considerations

The proposed mechanism of the transformation $2 \rightarrow 3$ is depicted in Scheme 4.

Scheme 4. Proposed mechanism for the addition of acid to propynol

As the electrophilic precatalyst **I** is known to favour the *trans-anti-*Markovnikov addition of carboxylic acids to terminal alkynes either *via* an initial η^2 -alkyne (**A**) or η^1 -vinylidene (**B**) coordination of the alkynol^[2,7] with the probable formation of intermediate **C**. On protonolysis of the electron-rich Ru–C bond, the (*Z*)-3-hydroxy-1-propen-1-yl benzoate **3** is expected to be formed and the catalytic species regenerated.

Whereas a concerted mechanism was proposed to explain the selective thermal transformation of the hydroxylated enol esters $\mathbf{3}$, [8] the reaction promoted by strong acids probably involves a cationic species. The protonation of 3-hydroxy-1-propen-1-yl benzoate $\mathbf{3}$ by a catalytic amount of a strong acid would give a cationic intermediate which readily undergoes transformation into the α,β -unsaturated aldehyde $\mathbf{4}$ with the release of benzoic acid (Scheme 5).

This process is an efficient alternative to the direct isomerization of 2-propyn-1-ols into α,β -unsaturated aldehydes, either conducted in strong acidic medium as initially described in the Meyer–Schuster reaction^[14] or with metaloxo catalysts,^[15] which lead to partial dehydration of the

Scheme 5. Acid-catalyzed cleavage of enol esters 3

starting propynylic alcohol or the formation of α,β -unsaturated ketones by the Rupe rearrangement.^[14b]

With our catalytic systems, attempts to carry out this transformation in one step were unsuccessful because the presence of PTSA or HBF₄ inhibited the crucial catalytic addition of benzoic acid to the alkynol, probably as a consequence of destruction the active catalyst.

Conclusion

The *anti*-Markovnikov addition of benzoic acid to 2-propyn-1-ols takes place in toluene at 50 °C and even at room temperature in the presence of [(dppe)Ru(η^3 -CH₂C-(Me)CH₂)₂] as catalyst. The regio- and stereoselectivity of the reaction is closely related to the steric hindrance of the starting 2-propyn-1-ol and does not depend on the reaction temperature. Both the (*Z*)- and (*E*)-3-hydroxy-1-propen-1-yl benzoates obtained were easily and cleanly converted into α,β -unsaturated aldehydes in the presence of a catalytic amount of an acid such as PTSA or HBF₄ with regeneration of benzoic acid. The two steps can be performed in the same pot without isolation of the intermediate 3 and benzoic acid can be recycled, thus providing an environmentally friendly process.

Experimental Section

General: All experiments were carried out using classical Schlenk techniques under an inert atmosphere of nitrogen. All chemicals were used as received. Complex **I** was synthesised according to a literature procedure. Toluene and diethyl ether were distilled over sodium/benzophenone, pentane was distilled over calcium hydride. Flash column chromatography was performed over Merck silica gel 30–60 mesh. H and H and Toluene NMR spectra were recorded on a Bruker DPX 200 at 200.131 MHz and 50.32 MHz, respectively. — IR spectra were recorded on a Nicolet 205 FTIR-spectrometer. Elemental

analyses were obtained from "Le Service de Microanalyses du CNRS", Vernaison, France.

Typical Experiment for the *anti*-Markovnikov Addition Catalysed by [(dppe)Ru(η^3 -CH₂C(Me)CH₂)₂]: 2-Propyn-1-ol (5 mmol) was added to a mixture of benzoic acid (5 mmol), [(dppe)Ru(η^3 -CH₂C(Me)CH₂)₂] (0.05 mmol) and toluene (3 mL). The mixture was stirred and heated at 50 °C for 2 h, then evaporated and purified by flash column chromatography over silica gel.

3-Hydroxy-3-methyl-1-buten-1-yl Benzoate (3a): Obtained from 2methyl-3-butyn-2-ol (2a) (5 mmol), benzoic acid (5 mmol) and $[(dppe)Ru(\eta^3-CH_2C(Me)CH_2)_2]$ (I) (1 mol-%, 0.05 mmol) in toluene (3 mL) as a colourless liquid (0.531 g, 51%, Z/E = 81:19) after column chromatography with ether/pentane (1:1) as eluent. - IR: $\tilde{v} = 3480 \text{ (OH)}, 3150, 3100 \text{ (arom. CH)}, 2975 \text{ (CH}_3), 1731 \text{ (C=O)},$ 1671 (C=C), $1265 (C-O) cm^{-1}$. $- {}^{1}H NMR (200 MHz, CDCl_3)$: $\delta = (Z) 8.10 - 8.00 \text{ (m, 2 H, C}_6\text{H}_5), 7.65 - 7.35 \text{ (m, 3 H, C}_6\text{H}_5), 7.19$ (d, J = 7.2 Hz, 1 H, -O-CH=C), 5.14 (d, J = 7.2 Hz, 1 H,-O-C=CH), 3.20 (broad s, 1 H, OH), 1.51 (s, 6 H, 2 Me); (E) 8.10-8.00 (m, 2 H, C_6H_5), 7.65-7.35 (m, 4 H, $C_6H_5 + -O-CH=$ C), 5.79 (d, J = 12.4 Hz, 1 H, -O-C=CH), 3.20 (broad s, 1 H, OH), 1.60 (s, 6 H, 2 Me). - ¹³C NMR (50 MHz, CDCl₃): $\delta =$ (Z) 163.1 (C=O), 133.6-128.4 (C₆H₅), 133.8 (-O-CH=C), 121.7 (-O-C=CH), 70.5 (C), 30.5 (2 Me); (E) 168.0 (C=O), $133.6-128.4 (C_6H_5), 135.3 (-O-CH=C), 123.7 (-O-C=CH),$ 69.4 (C), 30.0 (2 Me).

3,5-Dimethyl-3-hydroxy-1-hexen-1-yl Benzoate (3b): Obtained from DL-3,5-dimethyl-1-hexyn-3-ol 2b (5 mmol), benzoic acid (5 mmol) and I (1 mol-%, 0.05 mmol) in toluene (3 mL) as a colourless liquid (1.023 g, 82%, Z/E = 82:18) after column chromatography with ether/pentane (1:4) as eluent. – IR: $\tilde{v} = 3452$ (OH), 3060 (arom. CH), 2975, 2929, 2872 (alkyl CH), 1734 (C=O), 1669 (C=C), 1260 (C-O) cm⁻¹. - ¹H NMR (200 MHz, CDCl₃; mixed signals): $\delta =$ 8.09-8.04 (m, 2 H, C_6H_5), 2.50-2.20 (broad s, 1 H, OH), 1.90-1.76 [m, 1 H, CH(Me)₂], 1.74-1.52 (m, 2 H, CH₂), 0.99-0.94 [m, 6 H, CH(Me)₂]; (Z) 7.63-7.42 (m, 3 H, C₆H₅), 7.24(d, J = 7.3 Hz, 1 H, O-CH=C), 5.11 (d, J = 7.3 Hz, 1 H, O-C= CH), 1.50 (s, 3 H, Me); (E) 7.63-7.42 (m, 4 H, $C_6H_5 + O-CH=$ C), 5.74 (d, J = 12.4 Hz, 1 H, O-C=CH), 1.39 (s, 3 H, Me). ¹³C NMR (50 MHz, CDCl₃) (mixed signals): $\delta = 133.1 - 127.8$ (C_6H_5) , (Z) 162.3 (C=O), 132.0 (O-CH=C), 120.5 (O-C=CH), 71.4 (C), 50.9 (CH₂), 29.0 (Me), 24.0 [CH(Me)₂], 23.9 [CH(Me)₂]; (E) 163.3 (C=O), 134.8 (O-CH=C), 122.4 (O-C=CH), 72.8 (C), 51.0 (CH₂), 28.4 (Me), 23.8 [CH(Me)₂], 23.7 [CH(Me)₂].

3,7-Dimethyl-3-hydroxy-1,6-octadien-1-yl Benzoate (3c): Obtained from DL-3,7-dimethyl-6-octen-1-yn-3-ol 2c (5 mmol), benzoic acid (5 mmol) and I (1 mol-%, 0.05 mmol) in toluene (3 mL) as a colourless liquid (1.14 g, 83%, Z/E = 87:13) after column chromatography using ether/pentane (1:4) as eluent. – IR: $\tilde{v} = 3475$ (OH), 3100, 3061 (arom. CH), 2969, 2927, 2875, 2856 (alkyl CH), 1719 (C=O), 1671, 1666 (C=C), 1265 (C-O) cm⁻¹. - ¹H NMR (200 MHz, CDCl₃) (mixed signals): $\delta = 8.15 - 8.0$ (m, 2 H, C₆H₅), 7.60-7.32 (m, 3 H, C_6H_5), 5.15-5.05 [m, 1 H, $CH=C(Me)_2$], 3.35(broad s, 1 H, OH), 2.25-1.95 (m, 2 H, $C=C-CH_2$), 1.85-1.55(m, 2 H, CH₂), 1.63 (s, 3 H, C=CMe), 1.56 (s, 3 H, C=CMe), 1.48 (s, 3 H, Me); (Z) 7.26 (d, J = 7.7 Hz, 1 H, O-CH=C), 5.06 (d, J = 7.7 Hz, 1 H, O-C=CH); (E) 7.48 (d, J = 12.4 Hz, 1 H, O-CH=C), 5.71 (d, J = 12.4 Hz, 1 H, O-C=CH). $- {}^{13}C \text{ NMR}$ (50 MHz, CDCl₃) (mixed signals): $\delta = 163.0$ (C=O), 133.5-132.8 (C_6H_5) , 131.9 $[C=C(Me)_2]$, 129.9-128.5 (C_6H_5) , 124.2 $[C=C(Me)_2]$ $C(Me)_2$], 122.6 (C_6H_5), 73.1 (C), 25.7 (Me); (Z) 133.8 (O-CH= C), 120.6 (O-C=CH), 42.9 (C=CH-CH₂), 28.9 (C=CMe), 23.1

(CH₂), 17.7 (C=CMe); (E) 135.9 (O-CH=C), 122.6 (O-C=CH), 42.8 (C=CH-CH₂), 28.3 (C=CMe), 23.0 (CH₂), 17.8 (C=CMe). - C₁₇H₂₂O₃ (274.4): calcd. C 74.40, H 8.08; found C 74.00, H 8.02.

3-Hydroxy-3-methyl-1,6-heptadien-1-yl Benzoate (3d): Obtained from DL-3-methyl-6-hepten-1-yn-3-ol **(2d)** (5 mmol), benzoic acid (5 mmol) and **I** (1 mol-%, 0.05 mmol) in toluene (3 mL) as a colourless liquid (0.874 g, 71%, Z/E = 100:0) after column chromatography with ether/pentane (1:4) as eluent. – IR: $\tilde{v} = 3460$ (OH), 3050 (arom. CH), 2976, 2930 (alkyl CH), 1734 (C=O), 1672 (C=C), 1264 (C-O) cm⁻¹. – ¹H NMR (200 MHz, CDCl₃): δ = (Z) 8.10–7.95 (m, 2 H, C₆H₅), 7.65–7.30 (m, 3 H, C₆H₅), 7.26 (d, J = 7.3 Hz, 1 H, O–CH=C), 5.80 (m, 2 H, C=CH₂), 5.08 (d, J = 7.3 Hz, 1 H, O–C=CH), 4.90 (m, 1 H, CH=CH₂), 4.60 (broad s, 1 H, OH), 2.25–1.95 (m, 2 H, C=C–CH₂), 1.85–1.55 (m, 2 H, CH₂), 1.48 (s, 3 H, Me).

3-Hydroxy-3-phenyl-1-buten-1-yl Benzoate (3e): Obtained from DL-2-phenyl-3-butyn-2-ol (2e) (5 mmol), benzoic acid (5 mmol) and I (1 mol-%, 0.05 mmol) in toluene (3 mL) as a colourless liquid (1.21 g, 90%, Z/E = 67:33) after column chromatography with ether/pentane (1:3) as eluent. – IR: $\tilde{v} = 3452$ (OH), 3050 (arom. CH), 2975, 2945 (alkyl CH), 1737 (C=O), 1602 (C=C), 1265 (C-O) cm⁻¹. - ¹H NMR (200 MHz, CDCl₃) (mixed signals): δ = 8.10-7.0 (m, 11 H, 2 C₆H₅ + O-CH=C), 2.60 (broad s, 1 H, OH); (Z) 5.46 (d, J = 7.1 Hz, 1 H, O-C=CH), 1.77 (s, 3 H, Me); (E) 5.92 (d, J = 12.4 Hz, 1 H, O-C=CH), 1.74 (s, 3 H, Me). -¹³C NMR (50 MHz, CDCl₃) (mixed signals): $\delta = 133.8 - 125.2$ (2 C_6H_5); (Z) 163.1 (C=O), 147.9 (C_6H_5 ipso), 133.5 (O-CH=C), 121.1 (O-C=CH), 73.7 (C), 31.7 (Me); (E) 164.0 (C=O), 146.8 $(C_6H_5 ipso)$, 136.4 (O-CH=C), 123.4 (O-C=CH), 73.0 (C), 30.1 (Me). $-C_{17}H_{16}O_3$ (268.3): calcd. C 76.10, H 6.11; found C 76.47, H 6.29.

3,3-Diphenyl-3-hydroxy-1-propen-1-yl Benzoate (3f): Obtained from 1,1-diphenyl-2-propyn-1-ol **(2f)** (5 mmol), benzoic acid (5 mmol) and **I** (1 mol-%, 0.05 mmol) in toluene (3 mL) as a white solid (0.82 g, 79%, Z/E = 60:40) after column chromatography with ether/pentane (1:6) as eluent; m.p. 73 °C. – IR: $\tilde{v} = 3472$ (OH), 1715 (C=O), 1672 (C=C), 1273 (C-O) cm⁻¹. – ¹H NMR (200 MHz, CDCl₃) (mixed signals): $\delta = 8.10-8.00$ (m, 2 H, C₆H₅), 7.60–7.00 (m, 14 H, 3 C₆H₅ + O-CH=C), 3.05 (broad s, 1 H, OH); (Z) 5.74 (d, J = 7.0 Hz, 1 H, O-C=CH), (E) 6.30 (d, J = 12.3 Hz, 1 H, O-C=CH), 1.74 (s, 3 H, Me). – ¹³C NMR (50 MHz, CDCl₃) (mixed signals): $\delta = 133.8-126.5$ (C₆H₅), 77.8 (C); (Z) 162.8 (C=O), 146.7 (C₆H₅ *ipso*), 135.5 (O-CH=C), 120.4 (O-C=CH); (E) 163.8 (C=O), 145.8 (C₆H₅ *ipso*), 137.9 (O-CH=C), 122.1 (O-C=CH). – C₂₂H₁₈O₃ (330.4): calcd. C 79.98, H 5.49; found C 79.92, H 5.44.

20,21-Dehydrolevonorgestrel-21-yl Benzoate (3g) and 18,19-Dinor-13-β-ethylpregna-4,17-dien-21-al-3-one (4g): Obtained from levonorgestrel **2g** (1 mmol), benzoic acid (1 mmol) and **I** (1 mol-%, 0.01 mmol) in toluene (2 mL) after 2 h at 70 °C and 15 h at 100 °C as white solids after column chromatography with ether/pentane (3:1) as eluent; (**3g**) (0.176 g, 41%, Z/E = 0:100). – IR: $\tilde{v} = 3472$ (OH), 1727 (C=O benzoate), 1660 (C=O enone), 1619 (C=C) cm⁻¹. – ¹H NMR (200 MHz, CDCl₃): $\delta = 8.12-8.00$ (m, 2 H, C₆H₅), 7.65–7.34 (m, 4 H, C₆H₅ + O–CH=C), 5.83 (d, J = 15.6 Hz, 1 H, O–C=CH), 5.81 (s, 1 H, C=C⁴–H), 2.56–1.72 and 1.72–0.67 (2 m, 23 H), 1.02 (t, J = 7.4 Hz, 3 H, CH₂CH₃); (**4g**) (0.158 g, 51%, *E*-isomer). – IR: $\tilde{v} = 1667$ (C=O), 1615 (C=C) cm⁻¹. – ¹H NMR (200 MHz, CDCl₃): $\delta = 3.84$ (d, J = 7.9 Hz, 1 H, CHO), 5.81 (s, 1 H, C=C⁴–H), 5.66 (dt, J = 7.9 and 2.3 Hz, 1 H, C=CH–CHO), 3.0–2.7 (m, 2 H, CH₂¹⁸), 2.58–1.98,

1.98-1.75, 1.75-1.37 and 1.37-0.60 (4 m, 20 H), 0.70 (t, J = 7.4 Hz, 3 H, CH_2CH_3).

Typical Experiment for the Synthesis of α,β-Unsaturated Aldehydes (4): 2-Propyn-1-ol (2) was added to a solution of benzoic acid (1 equiv.) and **I** (1 mol-%) in toluene. The mixture was stirred and heated at 50 °C for 2 h, generating quantitatively compounds **3** as checked by 1 H NMR spectroscopy. Toluene-4-sulfonic acid (1 mol-%) or HBF₄·Et₂O solution (10 mol-%) was then added directly to the crude mixture containing the corresponding 3-hydroxy-1-propen-1-yl benzoate **3** at room temperature. The solution was stirred for 5 min to 15 h at room temperature, washed twice with 20 mL of a saturated aqueous NaHCO₃ solution, extracted twice with 20 mL of diethyl ether and dried over magnesium sulfate. After filtration and evaporation of the solvent, the α , β -unsaturated aldehydes **4** were purified by bulb-to-bulb distillation (kugelrohr).

3-Methyl-2-butenal (prenal, 4a): Obtained from 2-methyl-3-butyn-2-ol **(2a)** (10 mmol), benzoic acid (10 mmol) and **I** (1 mol-%, 0.1 mmol) without solvent after 2 h at 50 °C, then addition of PTSA (1 mol-%, 0.1 mmol) followed by stirring for 2 h at room temperature. Direct transfer at 20 °C at 1 Torr afforded **4a** as a colourless liquid (0.74 g, 88%). – IR: \tilde{v} = 2983, 2942, 2919, 2856 (alkyl C-H), 1676 (C=O), 1640 (C=C) cm⁻¹. – ¹H NMR (200 MHz, CDCl₃): δ = 9.90 (d, J = 8.2 Hz, 1 H, CHO), 5.83 (dm, J = 8.2 Hz, 1 H, C=CH), 2.12 (d, J = 1.1 Hz, 3 H, Me), 1.93 (d, J = 1.1 Hz, 1 H, Me). – ¹³C NMR (50 MHz, CDCl₃): δ = 191.6 (CHO), 161.5 [HC=C(Me)₂], 128.3 [HC=C(Me)₂], 27.5 (Me), 19.2 (Me).

3,7-Dimethyl-2,6-octadienal (citral, 4c): Obtained from DL-3,7-dimethyl-6-octen-1-yn-3-ol (2c) (2.5 mmol), benzoic acid (2.5 mmol) and I (1 mol-%, 0.025 mmol) in toluene (3 mL) after 2 h at 50 °C, then addition of PTSA (1 mol-%, 0.025 mmol) followed by stirring at room temperature for 15 h. Bulb-to-bulb distillation (kugelrohr) at 75 °C and 1 Torr afforded 4c as a colourless liquid (0.217 g, 57%). – IR: $\tilde{v} = 2925$ (alkyl CH), 1672 (C=O), 1636 (C=C) cm⁻¹. - ¹H NMR (200 MHz, CDCl₃) (mixed signals): $\delta = 5.81$ (d, J =8.1 Hz, 1 H, C=CH-CHO), 5.08-4.97 (m, 1 H, $CH=C(Me)_2$), 1.60 (s, 3 H, $trans-Me-C=C-CH_2$), 1.50 (d, J=1.3 Hz, 3 H, $cis-CH_2$) $Me-C=C-CH_2$; (Z) 9.82 (d, J=8.1 Hz, 1 H, CHO), 2.52 (t, $J = 7.4 \text{ Hz}, 2 \text{ H}, CH_2-C=C-CHO), 2.22-2.08 \text{ (m, 2 H, Me}_2C=$ $CH-CH_2$), 1.92 (s, 3 H, Me-C=C-CHO); (E) 9.92 (d, J=8.1 Hz, 1 H, CHO), 2.22-2.08 (m, 4 H, 2 CH₂), 2.10 (s, 3 H, Me-C=C-CHO). - ¹³C NMR (50 MHz, CDCl₃): $\delta = (Z)$ 191.2 (CHO), 163.8 (C=C-CHO), 132.9 [C=C(Me)₂], 127.4 [C= $C(Me)_2$], 122.6 (C=CH-CHO), 40.6 (CH₂-C=CH-CHO), 25.7 $[CH_2-CH=C(Me)_2]$, 25.6 (Me-C=C-CHO), 17.7, 17.6 [C= $C(Me)_2$; (E) 190.7 (CHO), 163.8 (C=C-CHO), 133.6 [C= $C(Me)_2$, 128.6 [$C=C(Me)_2$], 122.3 (C=CH-CHO), 32.6 $(CH_2-C=CH-CHO)$, 27.0 $[CH_2-CH=C(Me)_2]$, 25.0 (Me-C=CH)C-CHO), 17.7, 17.6 [C= $C(Me)_2$].

3-Phenyl-2-butenal (β-Methylcinnamaldehyde, **4e**): Obtained from DL-2-phenyl-3-butyn-2-ol (**2e**) (5 mmol), benzoic acid (5 mmol) and **I** (1 mol-%, 0.05 mmol) in toluene (3 mL) after 2 h at 50 °C, then addition of PTSA (1 mol-%, 0.05 mmol) followed by stirring at room temperature for 1.5 h. Bulb-to-bulb distillation (kugelrohr) at 116 °C and 1 Torr afforded **4e** as a colourless liquid (0.665 g, 91%, Z/E = 10:90). – IR: $\tilde{v} = 3060$, 3030 (arom. CH), 2852 (alkyl CH), 1663 (C=O), 1617 (C=C) cm⁻¹. – ¹H NMR (200 MHz, CDCl₃): $\delta = (Z) 10.09$ (d, J = 8.2 Hz, 1 H, CHO); (E) 9.39 (d, J = 8.2 Hz, 1 H, CHO), (mixed signals) 7.48–7.18 (m, 5 H, C₆H₅), 6.31 (dd, J = 7.8 and 1.2 Hz, 1 H, C=CH), 2.48 (d, J = 1.2 Hz, 3 H, Me), 6.05 (dd, J = 8.2 and 1.4 Hz, 1 H, C=CH), 2.23 (d, J = 1.4 Hz,

3 H, Me). - ¹³C NMR (50 MHz, CDCl₃): $\delta = (Z)$ 191.6 (CHO), 162.5 (Ph-C=CH), 140.9 (C₆H₅ ipso), 130.5-126.7 (C₆H₅), 127.6 (Ph-C=CH), 26.8 (Me); (E) 193.7 (CHO), 158.0 (Ph-C=CH), 138.8 (C₆H₅ ipso), 133.5 (Ph-C=CH), 130.5-126.7 (C₆H₅), 16.7 (Me).

Cyclohexylidenacetaldehyde, (4 h): Obtained from 1-ethynylcy-clohexanol **(2h)** (5 mmol), benzoic acid (5 mmol) and **I** (1 mol-%, 0.05 mmol) in toluene (3 mL) after 2 h at 25 °C, then addition of PTSA (1 mol-%, 0.05 mmol) followed by stirring at room temperature for 15 h. Bulb-to-bulb distillation (kugelrohr) at 34 °C and 1 Torr afforded **4h** as a colourless liquid (0.445 g, 72%. – IR: \tilde{v} = 1670 (C=O), 1635 (C=C) cm⁻¹. – ¹H NMR (200 MHz, CDCl₃): δ = 9.98 (d, J = 8.3 Hz, 1 H, CHO), 5.79 (d, J = 8.3 Hz, 1 H, C= CH), 2.67 (m, 2 H, cyclohexyl), 2.26 (m, 2 H, cyclohexyl), 1.65 (m, 6 H, cyclohexyl).

Acknowledgments

The authors wish to thank Dr. J.-E. Ancel (Rhône-Poulenc Industrialisation) for helpful discussions.

- [1] T. Naota, H. Takaya, S.-I. Murahashi, Chem. Rev. 1998, 98, 2599-2660.
- [2] [2a] C. Bruneau, P. H. Dixneuf, Chem. Commun. 1997, 507-512. – [2b] T. Mitsudo, Y. Hori, Y. Yamakawa, Y. Watan-abe, J. Org. Chem. 1987, 52, 2230-2239.
- [3] C. Bruneau, M. Neveux, Z. Kabouche, P. H. Dixneuf, *Synlett* 1991, 755–763.
- [4] B. Seiller, C. Bruneau, P. H. Dixneuf, Tetrahedron 1995, 51, 13089-13102.
- [5] M. Tokunaga, Y. Wakatsuki, Y. Angew. Chem. Int. Ed. 1998, 37, 2867–2869.

- [6] [6a] C. Bruneau, Z. Kabouche, M. Neveux, B. Seiller, P. H. Dixneuf, *Inorg. Chim. Acta* 1994, 22, 155–163. [6b] C. Darcel, C. Bruneau, P. H. Dixneuf, *J. Chem. Soc., Chem. Commun.* 1994, 333–334.
- [7] [7a] H. Doucet, B. Martin-Vaca, C. Bruneau, P. H. Dixneuf, J. Org. Chem. 1995, 60, 7247-7255. [7b] H. Doucet, J. Höfer, N. Derrien, C. Bruneau, P. H. Dixneuf, Bull. Soc. Chim. Fr. 1996, 133, 939-944. [7c] H. Doucet, N. Derrien, Z. Kabouche, C. Bruneau, P. H. Dixneuf, J. Organomet. Chem. 1997, 551, 151-157.
- [8] M. Picquet, C. Bruneau, P. H. Dixneuf, *Chem. Commun.* 1997, 1201–1202.
- [9] Similar observations were made for compound **3d**, see [8].
- [10] For related transformation of enol ethers to α,β-unsaturated aldehydes in 1 M HCl solution, see: H.-X. Wei, M. Schlosser, Chem. Eur. J. 1998, 4, 1738–1743.
- [11] G. Olhoff, Scent and fragrances; Springer-Verlag, Berlin, 1994.
 [12] [12a] C. Mercier, P. Chabardès, Pure Appl. Chem. 1994, 66, 1509-1518. [12b] T. Mino, S. Fukui, M. Yamashita, J. Org. Chem. 1997, 62, 734-735.
- [13] [13a] N. Balu, J. V. Thomas, S. V. Bhat, *J. Med. Chem.* **1991**, *34*, 2821–2823. [13b] A. Wada, M. Sakai, Y. Imamoto, Y. Shichida, M. Yamauchi, M. Ito, *J. Chem. Soc., Perkin Trans. I* **1997**, 1773–1777. [13c] A. Francesch, R. Alvarez, S. Lopez, A. R. de Lera, *J. Org. Chem.* **1997**, *62*, 310–319.
- de Lera, J. Org. Chem. 1371, 02, 310 317.

 [14] [14a] K. H. Meyer, K. Schuster, Chem. Ber. 1922, 55, 819–823.

 [14b] For a related review, see: S. Swaminathan, K. V. Narayanan, Chem. Rev. 1971, 71, 429–438.
- anan, Chem. Rev. 1971, 71, 429–438.

 [15] [15a] H. Pauling, D. A. Andrews, N. C. Hindley, Helv. Chim. Acta 1976, 59, 1233–1243. [15b] M. B. Erman, I. S. Aul' Chenko, L. A. Kheifits, V. G. Dulova, J. N. Novikov, M. E. Vol'pin, Tetrahedron Lett. 1976, 34, 2981-2984. [15c] P. ChabardEs, E. Kuntz, J. Varagnat, Tetrahedron 1977, 33, 1775–1783. [15d] P. Chabardès, Tetrahedron Lett. 1988, 48, 6253–6256. [15e] K. Narasaka, H. Kusama, Y. Hayashi, Chem. Lett. 1991, 1413–1416. [15f] C. Y. Lorber, J. A. Osborn, Tetrahedron Lett. 1996, 37, 853–856.

 Received October 10, 1999

Received October 10, 1999 [O99586]